A Novel Transport Mechanism for MOMP in Chlamydophila pneumoniae and Its Putative Role in Immune-Therapy
نویسندگان
چکیده
Major outer membrane proteins (MOMPs) of Gram negative bacteria are one of the most intensively studied membrane proteins. MOMPs are essential for maintaining the structural integrity of bacterial outer membranes and in adaptation of parasites to their hosts. There is evidence to suggest a role for purified MOMP from Chlamydophila pneumoniae and corresponding MOMP-derived peptides in immune-modulation, leading to a reduced atherosclerotic phenotype in apoE(-/-) mice via a characteristic dampening of MHC class II activity. The work reported herein tests this hypothesis by employing a combination of homology modelling and docking to examine the detailed molecular interactions that may be responsible. A three-dimensional homology model of the C. pneumoniae MOMP was constructed based on the 14 transmembrane β-barrel crystal structure of the fatty acid transporter from Escherichia coli, which provides a plausible transport mechanism for MOMP. Ligand docking experiments were used to provide details of the possible molecular interactions driving the binding of MOMP-derived peptides to MHC class II alleles known to be strongly associated with inflammation. The docking experiments were corroborated by predictions from conventional immuno-informatic algorithms. This work supports further the use of MOMP in C. pneumoniae as a possible vaccine target and the role of MOMP-derived peptides as vaccine candidates for immune-therapy in chronic inflammation that can result in cardiovascular events.
منابع مشابه
Chlamydia pneumoniae major outer membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants.
The major outer membrane protein (MOMP) of Chlamydia trachomatis serovariants is known to be an immunodominant surface antigen. Moreover, it is known that the C. trachomatis MOMP elicits antibodies that recognize both linear and conformational antigenic determinants. In contrast, it has been reported that the MOMP of Chlamydia pneumoniae is not surface exposed and is immunorecessive. We hypothe...
متن کاملProduction of Chlamydia pneumoniae proteins in Bacillus subtilis and their use in characterizing immune responses in the experimental infection model.
Due to intracellular growth requirements, large-scale cultures of chlamydiae and purification of its proteins are difficult and laborious. To overcome these problems we produced chlamydial proteins in a heterologous host, Bacillus subtilis, a gram-positive nonpathogenic bacterium. The genes of Chlamydia pneumoniae major outer membrane protein (MOMP), the cysteine-rich outer membrane protein (Om...
متن کاملDetection of Chlamydia pneumoniae-specific antibodies binding to the VD2 and VD3 regions of the major outer membrane protein.
Although Chlamydia pneumoniae is an important human pathogen, the antigens eliciting a specific humoral immune response remain elusive. We scrutinized several recombinant chlamydial surface proteins for species-specific recognition by a panel of human sera previously tested for the presence of anti-C. pneumoniae and anti-C. trachomatis antibodies by microimmunofluorescence and enzyme-linked imm...
متن کاملHigh-level expression of Chlamydia psittaci major outer membrane protein in COS cells and in skeletal muscles of turkeys.
The omp1 genes encoding the major outer membrane proteins (MOMPs) of avian Chlamydia psittaci serovar A and D strains were cloned and sequenced. The nucleotide sequences of the avian C. psittaci serovar A and D MOMP genes were found to be 98.9 and 87.8% identical, respectively, to that of the avian C. psittaci serovar A strain 6BC, 84.6 and 99.8% identical to that of the avian C. psittaci serov...
متن کاملRecombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism.
Sequences of the major outer membrane protein (MOMP) gene (ompA) and the outer membrane complex B protein gene (omcB) from Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci were analyzed for evidence of intragenic recombination and for linkage equilibrium. The Sawyer runs test, compatibility matrices, and index of association analyses provided substantial evidence that there h...
متن کامل